Absolute Rate Constant for the Reaction of Aryl Radicals with Tri-n-butyltin Hydride¹

S. J. Garden,² D. V. Avila,² A. L. J. Beckwith,³ V. W. Bowry,³ K. U. Ingold,* and J. Lusztyk*

Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6

Received July 12, 1995

"A knowledge of the rates with which a radical R is generated, rearranged and trapped by tin hydride now permits the rational planning of such free-radical reactions".4

For over a quarter of a century an important activity at the National Research Council of Canada (NRCC) has been the measurement of the absolute rate constants for the reactions of carbon-centered radicals with tri-nbutyltin hydride.5-8

$$\mathbf{R}^{\bullet} + n - \mathbf{B}\mathbf{u}_{3}\mathbf{S}\mathbf{n}\mathbf{H} \xrightarrow{\kappa_{\mathrm{H}}} \mathbf{R}\mathbf{H} + n - \mathbf{B}\mathbf{u}_{3}\mathbf{S}\mathbf{n}^{\bullet}$$
(1)

The availability of $k_{\rm H}$ values for a very wide variety of R. structures has undoubtedly contributed to the popularity of rational synthetic strategies which make use of free-radicals and tin hydride.^{4,9-11} However, when we attempted to measure $k_{\rm H}$ for $R^{\bullet} = C_6 H_5^{\bullet}$ by our (then) new laser flash photolysis (LFP) technique⁷ we were misled by the view prevailing at that time that the photolysis of dibenzoyl peroxide gave phenyl radicals "instantaneously".¹² However, we later demonstrated^{13–16}

$$(PhCO_2)_2 \xrightarrow{h\nu} 2Ph^{\bullet} + 2CO_2$$
 (2)

that the 308 nm LFP of diaroyl peroxides (including dibenzoyl peroxide¹⁴) gave aroyloxyl radicals which subsequently undergo a relatively slow decarboxylation. It

$$(ArCO_2)_2 \xrightarrow{h\nu} 2 ArCO_2^{\bullet}$$
 (3)

$$\operatorname{ArCO}_{2}^{\bullet} \xrightarrow{\operatorname{slow}} \operatorname{Ar}^{\bullet} + \operatorname{CO}_{2}$$
 (4)

appeared, therefore, that the rate constant which we had

(2) NRCC Research Associate. 1992-94.

- (4) Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev. 1991, 91, 1237-1286.
- (5) Carlsson, D. J.; Ingold, K. U. J. Am. Chem. Soc. 1968, 90, 1055. Carlsson, D. J.; Ingold, K. U. J. Am. Chem. Soc. 1968, 90, 7047–7055.
- (6) Chatgilialogiu, C.; Ingold, K. U.; Scaiano, J. C. J. Am. Chem. Soc. 1981, 103, 7739-7742.
- (7) Johnston, L. J.; Lusztyk, J.; Wayner, D. D. M.; Abeywickreyma, A. N.; Beckwith, A. L. J.; Scaiano, J. C.; Ingold, K. U. J. Am. Chem. Soc. 1985, 107, 4594-4596.
- (8) Avila, D. V.; Ingold, K. U.; Lusztyk, J.; Dolbier, W. R., Jr.; Pan, H.-Q.; Muir, M. J. Am. Chem. Soc. 1994, 116, 99-104.
- (9) Curran, D. P. Synthesis 1988, 417-439. Curran, D. P. Synthesis 1988, 489-513.
- (10) Neumann, W. P. Synthesis 1987, 665-683.
- (11) Giese, B. Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds. Pergamon: Oxford, U.K., 1986.
- (12) Scaiano, J. C.; Stewart, L. C. J. Am. Chem. Soc. 1983, 105, 3609 - 3614
- (13) Chateauneuf, J.; Lusztyk, J.; Ingold, K. U. J. Am. Chem. Soc. 1987, 109, 897-899. Chateauneuf, J.; Lusztyk, J.; Ingold, K. U. J. Am. Chem. Soc. 1988, 110, 2877-2885.
- (14) Chateauneuf, J.; Lusztyk, J.; Ingold, K. U. J. Am. Chem. Soc. **1988**, 110, 2886-2893.

(15) Aroyloxyl radicals have also been detected by conventional EPR spectroscopy.10

(16) Korth, H.-G.; Müller, W.; Lusztyk, J.; Ingold, K. U. Angew. Chem., Int. Ed. Engl. 1989, 28, 183-185.

measured in the dibenzoyl peroxide/tin hydride system, viz.,⁷ 5.9 \times 10⁸ M⁻¹ s⁻¹ at 30 °C, and had assigned to hydrogen atom abstraction by phenyl radicals, reaction 5, had to be reassigned to the benzoyloxyl radical/tin hydride reaction.

$$\operatorname{Ar}^{\bullet} + n\operatorname{-Bu}_{3}\operatorname{Sn}H \xrightarrow{k_{H}} \operatorname{Ar}H + n\operatorname{-Bu}_{3}\operatorname{Sn}^{\bullet}$$
 (5)

We now describe the determination, by two independent methods, of $k_{\rm H}$ and also of $k_{\rm D}$, the rate constant for deuterium abstraction from tri-n-butyltin deuteride by aryl radicals. One method is based on new LFP data for the reaction of aryl radicals with tetrahydrofuran (THF) and its perdeutero derivative (TDF) in aqueous solution. The other utilizes LFP data reported earlier by Scaiano and Stewart¹² for the reaction of phenyl radicals with methyl methacrylate in Freon 113. The two independent values which can be calculated for $k_{\rm H}$ (R[•] = aryl) are in reasonable agreement with one another. At last, therefore, it is possible to apply conventional competitive kinetic techniques to determine the magnitude of the rate constants for reactions of aryl radicals with other compounds of chemical^{7,17} and biochemical¹⁸ importance.

Results

Measurement of $k_{\rm H}$ and $k_{\rm D}$ by Intermolecular Competitions with TDF and THF. A major difficulty associated with kinetic studies on aryl radicals is their high reactivity toward all common organic solvents. We have recently demonstrated²¹ that this problem can be overcome by 308 nm LFP of the sodium salt of 4-iodobenzoic acid $(1.55 \times 10^{-2} \text{ M})^{22}$ in water. The kinetic behavior of the resultant aryl radical was monitored at 320 nm via its reaction with the water-soluble "probe"23,24 molecule, the sodium salt of 4-styrenesulfonic acid, which was employed at a concentration of 2.0×10^{-3} M in the probe experiments. The global rate constants for reaction of this aryl radical with the probe,²⁴ k_{probe} , and with perdeuterotetrahydrofuran, tetrahydrofuran, and a few other compounds, k_{gl} , were measured in the usual way (incremental additions of the substrate at a constant concentration of the probe), i.e.,

$$k_{\text{exptl}} = k_{\text{probe}}[\text{probe}] + k_{\text{gl}}[\text{substrate}]$$
 (I)

These rate constants are given in Table 1.

A radical chain reaction between iodobenzene and tri*n*-butyltin deuteride (nominally 97 atom % D) at ca. 1:10 mole ratio was carried out in THF as solvent at 31 °C

- Medicine, 2nd ed.; Clarendon Press: Oxford, U.K., 1989. (20) Casini, A. F.; Pompella, A.; Comporti, M. Am. J. Pathol. 1985,
- 118, 225-237
- (21) Sommeling, P. M.; Mulder, P.; Louw, R.; Avila, D. V.; Lusztyk, J.; Ingold, K. U. *J. Phys. Chem.* **1993**, *97*, 8361–8364.
- (22) This concentration gives an optical density, OD \sim 0.3 at 308 nm in our 7-mm LFP cell. (23) Paul, H.; Small, R. D., Jr.; Scaiano, J. C. *J. Am. Chem. Soc.*
- 1978, 100, 4520-4527

0022-3263/96/1961-0805\$12.00/0 Published 1996 by the American Chemical Society

⁽¹⁾ Issued as NRCC No. 39084.

⁽³⁾ Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.

⁽¹⁷⁾ Glover, S. A.; Warkentin, J. J. Org. Chem. 1993, 58, 2115-2121

⁽¹⁸⁾ The metabolism of certain exogenous compounds which may give rise to phenyl radicals in vivo, e.g., PhNHNH₂, PhI, and PhBr, causes the peroxidation of hepatic cellular lipids with consequent cellular damage.¹⁹ Peroxidation is undoubtedly a free radical process since, in at least one case, the liver can be protected by dosing the animal with the water-soluble radical-trapping antioxidant, Trolox.²⁰ (19) Halliwell, B.; Gutteridge, J. M. C. *Free Radicals in Biology and*

⁽²⁴⁾ In Scheme 1 this reaction is written as an addition to form a benzylic radical which is the species presumed to be mainly responsible for the grow-in of the 320 nm absorption. However, the global rate constant measured with this substrate includes all modes of reaction including, for example, addition to the aromatic ring.

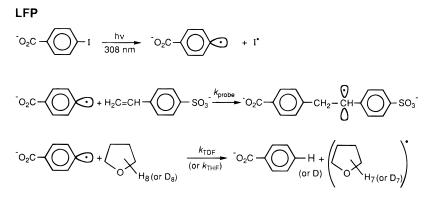
Table 1. Absolute Rate Constants for Reaction of the 4- $^{-}O_2CC_6H_4$ Radical with some Substrates in Water at 25 \pm 2 $^{\circ}C$

substrate	$k_{ m gl}/10^7~{ m M}^{-1}~{ m s}^{-1}~{ m a}$
$H_2C = CHC_6H_4SO_3^-$	$32.5\pm1.5_{0}(k_{ m probe})$
THF^{b}	$0.37_5 \pm 0.03_0$ ($k_{ m THF}$)
TDF^{c}	$0.13_2 \pm 0.00_3~(k_{ m TDF})$
2-cyclohexen-1-ol	$3.7_2\pm0.2_3$
$H_2 C = CHC(CH_3)_2OH$	$2.9_6\pm0.1_6$
$HC \equiv CC(CH_3)_2OH$	$1.4_6\pm0.1_1$
furan	$2.3_5\pm0.3_1$

^{*a*} Errors are expressed as 2σ (95% confidence limit) but include only random errors. Rate constants which are employed in the text are given in parentheses. ^{*b*} Tetrahydrofuran. ^{*c*} Perdeuterotetrahydrofuran.

(see Scheme 1). The chain reaction was initiated by photolysis of the deoxygenated mixture (see Experimental Section) in a Pyrex reaction vessel with light having $\lambda > 300$ nm. The iodobenzene was completely consumed within 15 min and at this time a sample of the reaction mixture was analyzed by GC/MS. The relative abundance of the ions at m/z = 76, 77, 78, 79, and 80 were determined by selective ion monitoring and the actual relative yields of benzene, (C₆H₆)_{actual}, and benzene- d_1 (C₆H₅D)_{actual}, (i.e., concentrations of benzene corrected for the contribution of the M-1 ion from benzene- d_1 and concentrations of benzene- d_1 , corrected for contributions from natural abundance ¹³C and ²H in benzene) were calculated as described in the Experimental Section.

In order to obtain the true rate constant ratio, $k_{\text{THF}}/k_{\text{D}}$, two corrections must be applied. First, the nominal concentration of *n*-Bu₃SnD must be reduced by 4% to allow for the fact that the purity of this material was only 96.0%. The second correction arises from the fact


that the n-Bu₃SnD was not 100% deuterated. The claimed isotopic purity was 96.6 atom % D which could imply as much as 3.4% *n*-Bu₃SnH which would serve as an "extra" source of C_6H_6 . In addition, there was the possibility that some of the phenyl radicals which react with *n*-Bu₃SnD would abstract *hydrogen* from the butyl groups rather than deuterium from the SnD moiety thus giving additional "extra" C₆H₆. The correction for C₆H₆ formation in the C₆H₅/*n*-Bu₃SnD reaction was checked experimentally by photolysis (4 min, λ > 300 nm) of phenyl iodide in neat n-Bu₃SnD (ca. 1:10 mole ratio). In three separate experiments the mean actual yield of C_6H_6 was found to be 2.8 \pm 0.5% of the total yield of benzene $(C_6H_5D + C_6H_6)$ – which implies that there is little or no hydrogen abstraction from the butyl groups by the phenyl radical. The actual yield of C₆H₆ (calculated as described in the Experimental Section) must therefore be reduced by 2.8% before the true magnitude of the rate constant ratio, $k_{\text{THF}}/k_{\text{D}}$, can be determined. If all of these corrections are applied, we have:

$$\frac{k_{\rm THF}}{k_{\rm D}} = \frac{(C_6 H_6)_{\rm actual} - 0.028 (C_6 H_5 D)_{\rm actual}}{(C_6 H_5 D)_{\rm actual}} \times \frac{(0.960 \times 0.972) (n - Bu_3 SnD)_{\rm nominal}}{[THF]}$$
(II)

The results of five separate experiments and the values calculated for $k_{\text{THF}}/k_{\text{D}}$ are summarized in Table 2.

In a second series of experiments the rate constant, k_{TDF} , for aryl radical attack on perdeuterotetrahydrofuran (TDF, > 99.5 atom % D) was measured by LFP (*vide supra*, Table 1 and Scheme 1). A radical chain reaction

Scheme 1

Product Study



Table 2. Reaction of Iodobenzene with Tri-n-butyltin Deuteride in Tetrahydrofuran at 31 °C^a

reactants (mol)					
$\frac{10^5 \times }{PhI}$	$10^4 \times n$ -Bu ₃ SnD ^b	$\begin{array}{c} 10^2 \\ \times \ THF \end{array}$	THF/ <i>n</i> -Bu ₃ SnD ^b	$\begin{array}{c} C_6 H_6 / \\ C_6 H_5 D^{\it c} \end{array}$	$10^2 imes k_{ m THF}/k_{ m D}{}^d$
1.13 1.42 2.40 2.01 1.08	1.08 1.35 1.89 1.60 2.06	1.22 1.23 1.24 1.22 1.22	113 91.1 65.6 76.3 59.2	0.970 0.838 0.597 0.735 0.588	0.858 0.920 0.910 0.963 0.993

^a Experiments are listed in the order in which they were carried out. ^b The moles of *n*-Bu₃SnD have been corrected for the purity and atom % in the following manner: $(n-Bu_3SnD)_{actual} = (n-Bu_3SnD)_{actual}$ Bu₃SnD)_{nominal} \times 0.960 \times 0.972, where the *n*-Bu₃SnD was supplied as 96.0% purity and the atom % was determined from the mean values of three experiments where iodobenzene was photolyzed in neat *n*-Bu₃SnD. ^c This ratio was calculated from the ion intensities of m/z = 78 and 79 and solution of the two simultaneous equations as detailed in the Experimental Section. The intensity data for C₆H₆ has been corrected for C₆H₆ formation from the *n*-Bu₃SnH present in the *n*-Bu₃SnD sample: $(C_6H_6)_{actual} = (C_6H_6)$ $[0.028 \times 0.96 \times (C_6H_5D)]$. $d_{k_{THF}/k_D} = (C_6H_6/C_6H_5D)^{c/}(THF/n_5)^{c/}$ $Bu_3SnD)^b$.

of iodobenzene and n-Bu₃SnH in TDF was carried out in the manner described above (see also Scheme 1). The results of these experiments are summarized in Table 3. In order to obtain the true rate constant ratio, $k_{\text{TDF}}/k_{\text{H}}$, where $k_{\rm H}$ refers only to abstraction of the hydrogen atom from tin, i.e., from the SnH moiety, it would be necessary to correct the actual yield of C₆H₆ for C₆H₆ formed by hydrogen atom abstraction from the butyl groups of *n*-Bu₃SnH. Since this reaction is unimportant with *n*-Bu₃SnD we can safely ignore it with *n*-Bu₃SnH. Furthermore, since the TDF contained 99.5 + atom % D no correction is necessary for C₆H₆ formed in the C₆H₅·/TDF reaction. Since the *n*-Bu₃SnH was only 97% pure the equation used to derive the $k_{\text{TDF}}/k_{\text{H}}$ ratios given in Table 3 was:

$$\frac{k_{\text{TDF}}}{k_{\text{H}}} = \frac{(C_6 H_5 D)_{\text{actual}}}{(C_6 H_6)_{\text{actual}}} \times \frac{0.97 (n - B u_3 \text{SnH})_{\text{nominal}}}{[\text{TDF}]} \quad \text{(III)}$$

Measurement of $k_{\rm H}$ and $k_{\rm D}$ by Intermolecular Competition with Methyl Methacrylate (MMA). The radical chain reduction of *p*-iodotoluene, ArI, with *n*-Bu₃-SnH(D) in the presence of MMA affords mixtures of toluene, ArH(D), and the adduct, ArCH₂CH(Me)CO₂Me (Add-H) or ArCH₂CD(Me)CO₂Me (Add-D):

$$n-\mathrm{Bu}_{3}\mathrm{Sn}^{\bullet} + \mathrm{ArI} \to n-\mathrm{Bu}_{3}\mathrm{SnI} + \mathrm{Ar}^{\bullet}$$
 (6)

$$\operatorname{Ar}^{\bullet} + n \operatorname{Bu}_{3}\operatorname{SnH}(D) \xrightarrow{k_{H(D)}} \operatorname{ArH}(D) + n \operatorname{Bu}_{3}\operatorname{Sn}^{\bullet} (5)$$

$$Ar^{\bullet} + CH_2 = C(Me)CO_2Me \xrightarrow{k_{MMA}} ArCH_2\dot{C}(Me)CO_2Me \text{ (Add^{\bullet})} (7)$$

 $Add' + n-Bu_3SnH(D) \rightarrow Add-H(D) + n-Bu_3Sn'$ (8)

The relative rate of formation of ArH and Add-H is given by:

$$d[\text{ArH}]/d[\text{Add-H}] = (k_{\text{SH}}[\text{SH}] + k_{\text{H}}[n-\text{Bu}_{3}\text{SnH}])/k_{\text{MMA}}[\text{MMA}] \text{ (IV)}$$

where $k_{\rm SH}$ represents the total H-atom donor ability of

Table 3. Reaction of Iodobenzene with Tri-n-butyltin Hydride in Perdeuteriotetrahydrofuran at 31 °Ca

1	reactants (mol)			
$\frac{10^5 \times }{PhI}$	$10^5 \times n$ -Bu ₃ SnH ^b	$10^2 \times TDF^c$	TDF/ <i>n</i> -Bu ₃ SnH	$\begin{array}{c} \mathrm{C_6H_6}\!\!/ \\ \mathrm{C_6H_5D^d} \end{array}$	$10^2 imes k_{ m TDF}/k_{ m H}{}^e$
1.03 1.03 1.08 0.931 1.08	16.9 1.57 3.53 6.83 2.47	1.27 1.27 1.27 1.28 1.27	75.1 809 360 187 514	7.74 0.506 1.41 2.84 0.936	0.172 0.244 0.197 0.188 0.208

^a Experiments are listed in the order in which they were carried out. ^b Since the *n*-Bu₃SnH was supplied as 97% purity, the moles of *n*-Bu₃SnH have been reduced by 3%. ^c The perdeuteriotetrahydrofuran (TDF) was supplied as 99.5+ atom % deuterium and hence no correction was applied for incompletely deuterated TDF. ^{*d*} This ratio was calculated from the ion intensities of m/z = 78and 79 and solution of the two simultaneous equations as detailed in the Experimental Section. $e_{\text{TDF}}/k_{\text{H}} = 1/\{(C_6H_6/C_6H_5D) \times (\text{TDF}/\text{TDF})\}$ n-Bu₃SnĤ)}.

Table 4. Reaction of *p*-Iodotoluene (~0.5 M) with Tri-n-butyltin Hydride (Deuteride) and Methyl Methacrylate in Cyclohexane at 25 °C

[<i>n</i> -Bu ₃ SnH] ^a (M)	[MMA] (M)	$\frac{[\text{ArH}]^b}{[\text{Add-H}]}$	[<i>n</i> -Bu ₃ SnD] ^a (M)	[MMA] (M)	$\frac{[ArD(H)]^b}{[Add-D]}$
0.12	1.31	0.61	0.14	1.31	0.54
0.22	1.42	0.81	0.25	1.45	0.69
0.40	1.35	1.7	0.42	1.40	1.25
0.72	1.20	3.1	0.74	1.25	2.2

^a Average concentration of *n*-Bu₃SnH or *n*-Bu₃SnD during the reaction. ^b Ratio of yields of toluene (ArH or ArD + ArH) to reduced first adduct (Add-H or Add-D) as measured by GC.

the reactant mixture.²⁵ Under pseudo-first-order conditions, i.e., low conversion of *n*-Bu₃SnH, this equation approximates to:

$$[MMA]([ArH]/[Add-H]) = k_{SH}[SH]/k_{MMA} + k_{H}[n-Bu_{3}SnH]/k_{MMA}$$
(V)

Thus, a plot of [MMA]([ArH]/[Add-H]) against [n-Bu₃-SnH] should give a straight line with a slope equal to $k_{\rm H}/k_{\rm MMA}$. For the reaction of ArI with *n*-Bu₃SnD the relevant equation is:

$$[MMA]([ArD]/[Add-D]) = k_{SH}[SH]/k_{MMA} + k_{D}[n-Bu_{3}SnD]/k_{MMA}$$
 (VI)

This equation applies because only the total yield of toluene was measured (by GC), not the actual yield of ArD (by, e.g., GC/MS), and because it seems safe to assume that the Add[•] radical will react only with *n*-Bu₃-SnD.

The experiments were conducted by adding *n*-Bu₃SnH-(D) and a catalytic amount of di-tert-butyl hyponitrite to a solution containing about 1 mol equiv of *p*-iodotoluene and an excess of MMA in cyclohexane. The reactions were stopped after 2 h by which time they had proceeded about 5-10% toward completion. The mixtures were then guenched by the addition of carbon tetrachloride and analyzed by GC.²⁶ Four experiments were carried out with *n*-Bu₃SnH and four with *n*-Bu₃SnD (see Table 4). Plots according to eqs V and VI yield $k_{\rm H}/k_{\rm MMA} = 5.0 \pm$ 0.6 with $k_{\rm SH}$ [SH]/ $k_{\rm MMA}$ = 0.17 ± 0.24, and $k_{\rm D}/k_{\rm MMA}$ = 3.5

⁽²⁵⁾ The potential H-atom donors include MMA, the benzylic methyl

group of *p*-iodotoluene and the cyclohexane solvent. (26) Polymerization (i.e., Add + MMA→) and stannylation (i.e., *n*-Bu₃Sn + MMA→) afforded minor byproducts under our conditions (i.e., $[n-Bu_3SnH(D)]/[MMA] \ge 0.05$, $[ArI]/[MMA] \ge 0.3$).

 \pm 0.4 with $k_{\rm SH}[{\rm SH}]/k_{\rm MMA}=0.21\pm0.16,$ where the errors correspond to 2σ .

Discussion

Because the SOMO in aryl radicals lies in the plane of the aromatic ring, i.e., these are "isolated" σ -radicals,^{27,28} substituents on the ring are expected (and have been shown)²⁹ to have only a relatively minor effect on the rates of reactions of these radicals.³⁰ We can therefore assume that the two aryl radicals generated in the present work, viz., 4--O2CC6H4 and 4-CH3C6H4, should have rather similar reactivities. For the reactions investigated, solvent effects are also expected to be relatively unimportant despite the wide range of solvents employed.³¹ The small difference in the temperatures employed in the product studies (31 °C) and in the LFP measurements (25 ± 2 °C) can also be ignored.

The kinetic picture which emerges from the experiments involving intermolecular competition reactions with THF and TDF is (i) $k_{\rm THF} = (3.75 \pm 0.30) \times 10^{6} \, {
m M}^{-1}$ ${
m s}^{-1}$ (Table 1) and $k_{
m THF}/k_{
m D} = (0.929 \pm 0.093) imes 10^{-2}$ (Table 2), from which:

$$k_{\rm D} = (4.04 \pm 0.73) \times 10^8 \,{\rm M}^{-1} \,{\rm s}^{-1}$$

and (ii) $k_{\rm TDF} = (1.32 \pm 0.03) \times 10^6 \, {
m M}^{-1} \, {
m s}^{-1}$ (Table 1) and $k_{\rm TDF}/k_{\rm H} =$ (0.202 \pm 0.048) \times 10⁻² (Table 3), from which:

$$k_{\rm H} = (6.53 \pm 1.70) \times 10^8 \,{\rm M}^{-1} \,{\rm s}^{-1}$$

where all errors have been expressed as 2σ but include only random errors. These data give a deuterium kinetic isotope effect, DKIE, $k_{\rm H}/k_{\rm D}$ = 1.6, which is somewhat larger than previously reported values for aryl radicals, viz., 1.432 and 1.3.33

The kinetic picture which emerges from the intermolecular competition reactions with MMA is (iii) $k_{\text{MMA}} =$ $1.8 imes 10^8$ $\dot{\mathrm{M^{-1}}}$ s^{-1 12} and $k_{\mathrm{D}}/k_{\mathrm{MMA}} = 3.5 \pm 0.4$ (vide supra and Table 4) from which:

$$k_{\rm D} = (6.3 \pm 0.7) \times 10^8 \,{\rm M}^{-1} \,{\rm s}^{-1}$$

and (iv) $k_{\rm H}/k_{\rm MMA} = 5.0 \pm 0.6$ (vide supra and Table 4) from which:

$$k_{\rm H} = (9.0 \pm 1.1) \times 10^8 \,{
m M}^{-1} \,{
m s}^{-1}$$

and hence $k_{\rm H}/k_{\rm D} = 1.4$.

The $k_{\rm D}$ values derived from the THF experiments, viz., (4.0 \pm 0.7) \times 10 8 M^{-1} $s^{-1},$ and from the MMA experiments, viz., $(6.3 \pm 0.7) \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$ differ by slightly more than our 95% (random error) confidence limits. Hopefully, their mean value, viz., $5.2 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$ will be fairly reliable.³⁴ More gratifyingly, the $k_{\rm H}$ values derived from the TDF experiments, viz., (6.5 \pm 1.7) \times $10^8\,{
m M}^{-1}\,{
m s}^{-1}$, and from the MMA experiments, viz., (9.0 \pm 1.1) \times 10 $^8~M^{-1}~s^{-1},$ are in agreement within our 95% confidence limits. Our recommended value for the rate constant for the reactions of aryl radicals with n-Bu₃SnH at ambient temperatures is the mean of the two measured values,³⁵ viz.,

$$k_{\rm H} = 7.8 \times 10^8 \,{\rm M}^{-1} \,{\rm s}^{-1}$$

At 80 °C (a temperature at which a great deal of synthetic chemistry is carried out with tin hydride) we estimate that $k_{\rm H} \approx 1.0 \times 10^9 \ {\rm M}^{-1} \ {\rm s}^{-1}$.

Experimental Section

Materials. The following compounds were purchased from Aldrich and were generally used without further purification:

$$\langle \bigcirc^{\bullet} (CH_2)_3 \longrightarrow \langle \bigcirc \rangle \longrightarrow \langle \bigcirc (CH_2)_2 \overset{\bullet}{CH} \longrightarrow (1)$$

(35) Serious attempts were made to improve the accuracy of $k_{\rm H}$ by measuring $k_{\rm H}/k_{\rm D}$ in direct competition experiments using *n*-Bu₃SnH/ n-Bu₃SnD mixtures and iodobenzene or bromobenzene and analyzing for the C₆H₆/C₆H₅D ratios. To avoid complications due to H-atom abstraction from the solvent the reactions were photo-initiated using a deficiency of the halobenzene in mixtures of (neat) n-Bu₃SnH and (neat) *n*-Bu₃SnD (ca. 1:10:10 mole ratio). After applying all necessary corrections (see Experimental Section) we discovered to our surprise that the measured $k_{\rm H}/k_{\rm D} = 1.0$ (see Table 5 in the Supplementary Material for typical results with iodobenzene). This was demonstrated to be a "peculiarity" of the phenyl radical since using haloalkanes which would yield primary alkyl radicals we obtained $k_{\rm H}/k_{\rm D}$ (1-pentyl) = 2.1 \pm 0.1 by direct competition in neat *n*-Bu₃SnH/*n*-Bu₃SnD, and $k_{\rm H}/k_{\rm D}$ (5-hexenyl) = 2.3 \pm 0.1 by inter/intramolecular competition, both reactions being run in decane at 25 °C. The literature gives $k_{\rm H}/k_{\rm D}$ (1butyl) = 2.3 by LFP.⁶ Our initial "explanation" for these results with the phenyl halides was that H(D)-atom abstraction by phenyl radicals in neat n-Bu₃SnH/n-Bu₃SnD was a diffusion-controlled process. Unfortunately, this simple "explanation" cannot be correct because the viscosity of neat *n*-Bu₃SnH is only 1.5 cP at 20 $^{\circ}C^{36}$ and a diffusioncontrolled radical-molecule reaction in a solvent of this viscosity would have a rate constant of about $4 \times 10^9 \, M^{-1} \, s^{-1}$ 37 which is at least five times as large as our measured value for $k_{\rm H}$. The reason for the peculiar behavior of phenyl radicals in neat n-Bu₃SnH/n-Bu₃SnD mixtures is not clear. However, we tentatively suggest that we were not irradiating the phenyl halide per se, but rather we were irradiating phenyl halide/ tin hydride charge transfer complexes and that this process gave benzene and tin halide directly and immediately with no possibility of H/D discrimination by free phenyl radicals.

$$n\text{-}\mathsf{Bu}_3\mathsf{SnH} + \mathsf{XPh} \xleftarrow{} \left[\begin{array}{c} \delta + \\ n\text{-}\mathsf{Bu}_3\mathsf{Sn} \checkmark \overset{\mathsf{H}}{\mathsf{X}} \overset{\mathsf{Ph}}{\overset{\mathsf{Ph}}{\overset{\mathsf{I}}{\mathsf{X}}} \end{array} \right] \longrightarrow n\text{-}\mathsf{Bu}_3\mathsf{Sn} \overset{\mathsf{H}}{\overset{\mathsf{V}}{\mathsf{X}}} \overset{\mathsf{Ph}}{\overset{\mathsf{Ph}}{\overset{\mathsf{I}}{\mathsf{X}}}$$

(36) We thank Witco GmbH, Bergkamen, Germany, for providing this data and an unknown referee for encouraging us to pursue the

origin of the peculiarity of the neat *n*-Bu₃SnH/*n*-Bu₃SnD system. (37) $(k_{\text{diff}}/M^{-1} \text{ s}^{-1}) = 2 \times 10^7 \text{ T}/\eta$ with η in cP, see: Turro, N. J. *Modern Molecular Photochemistry*, Benjamin/Cummings Publ. Co.: Menlo Park, California, 1978; p 314.

⁽²⁷⁾ Barclay, L. R. C.; Griller, D.; Ingold, K. U. J. Am. Chem. Soc. 1974, 96, 3011-3012. Brunton, G.; Griller, D.; Barclay, L. R. C. J. Am. *Chem. Soc.* **1976**, *98*, 6803–6811. Brunton, G.; Gray, J. A.; Griller, D.; Barclay, L. R. C.; Ingold, K. U. J. Am. Chem. Soc. **1978**, *100*, 4197– 4200.

⁽²⁸⁾ Porter, G.; Ward, B. Proc. R. Soc., London, Ser. A 1965, 287, 457–470. Bennet, J.; Mile, R.; Thomas, A. Proc. R. Soc., London, Ser. A 1966. 293. 246-258.

⁽²⁹⁾ Mertens, R.; von Sonntag, C. Angew. Chem., Int. Ed. Engl. 1994, 33, 1262–1264. von Sonntag, C. Private communication.
(30) Except when the radical center is protected by two bulky ortho-

substituents.27

⁽³¹⁾ These two assumptions receive support from the agreement between the values of k_H/k_{MMA} and k_D/k_{MMA} calculated from the data in Table 4 via eqs V and VI, viz., 5.0 ± 0.6 and 3.5 ± 0.4 , respectively (vide infra).

⁽³²⁾ Strong, H. L.; Brownawell, M. L.; San Filippo, J., Jr. J. Am. Chem. Soc. **1983**, 107, 6526–6528.

⁽³³⁾ Abeywickrema, A. N.; Beckwith, A. L. J. J. Chem. Soc., Chem. Commun. 1986, 464-465.

⁽³⁴⁾ In this connection, we note that some years ago we attempted to measure $k_{\rm D}$ using o-(3-phenylpropyl)iodobenzene as the source of an aryl radical which could rearrange by an intramolecular abstraction of a benzylic hydrogen atom (eq i). In isooctane at 25 °C an LFP study gave $k_{exptl} = (1.4 \pm 0.2) \times 10^7 \ s^{-1}$ for the growth of the rearranged radical but this rate constant is not $k_{\rm r}$ since it also included contributions from any first- and pseudo-first-order processes which the radical undergoes, including H-atom abstraction from the solvent, rate constant, k_{OCT} . A photoinitiated radical chain reaction of this iodide with n-Bu₃SnD in isooctane at 25 °C followed by ²H NMR analysis showed only an aromatic and a benzylic deuterium. From the ratio of these two products at known concentrations of *n*-Bu₃SnD we obtained $k_D/k_r = 35 \pm 4 \text{ M}^{-1}$, and hence $k_D \leq 4.9 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$ which implies that this ortho-substituted phenyl radical is somewhat less reactive than the 4-CH₃C₆H₄ and 4-O₂CC₆H₄ radicals. The rough magnitude of the correction to $k_{\rm r}$ for reaction with the solvent was determined by photolyzing PhI (0.02 M) and n-Bu₃SnD (0.1 M) in isooctane and analyzing for C_6H_6 and C_6H_5D . After applying all corrections we found that 4.8% of the benzene was due to phenyl radical attack on the isooctane. Thus, for the phenyl radical itself, $k_{OCT}[OCT] = 0.048 k_D$ $[n-\text{Bu}_3\text{SnD}] = 0.0048 \ k_D = 4.8 \times 10^{-3} \times 5.2 \times 10^8 = 2.5 \times 10^6 \ \text{s}^{-1}$, and hence $k_{\text{OCT}} \approx 4 \times 10^5 \ \text{M}^{-1} \ \text{s}^{-1}$.

tri-*n*-butyltin hydride, (97% pure), tri-*n*-butyltin deuteride (96.0% pure, 96.6 atom % D), 4-iodobenzoic acid, 4-iodotoluene (colorless crystals, 99.8% pure by GC), sodium salt of 4-styrene sulfonic acid, tetrahydrofuran (THF purified by distillation from Na/K alloy), perdeuterotetrahydrofuran (99.5+ atom % D) and methyl methacrylate (MMA purified by distillation on a Dufton column, the 99.9–100.0 °C fraction was 99.8% pure by GC and was stored in a brown bottle at -20 °C).

Purification of Iodobenzene. Iodobenzene (10.0 g, Aldrich) in ether (20 mL) was treated with an aqueous solution of sodium thiosulfate (0.10 M, 30 mL). The ether solution was separated and passed through a column of basic alumina. The elution was completed using an additional quantity of ether (20 mL). The ether was removed at room temperature on a rotary evaporator, and the residue was fractionally distilled under reduced pressure. Pure, colorless iodobenzene was collected at 74 °C/15–20 Torr (8.9 g, 89% yield). It was stored in the dark over copper wire (which had previously been treated with a strong aqueous nitric acid solution, rinsed, and dried).

Laser Flash Photolysis (LFP). The general procedures have been adequately described in numerous other publications from this laboratory. $^{6-8,12-14,21}$

Reaction of Iodobenzene with Tri-n-butyltin Deuteride in Tetrahydrofuran. A typical experiment was carried out as follows. Into a rubber septum-capped Pyrex tube were added, via syringe, iodobenzene (2.3 mg, 11.3 µmoles), tetrahydrofuran (THF, 1 mL, 0.880 g, 12.2 mmol) and n-Bu₃SnD (33.9 mg, 116 μ mol). This mixture was cooled to -78 °C (acetone, dry ice) and purged with a slow, steady stream of nitrogen for 15 min. The reaction mixture was then warmed to room temperature and was photolyzed for 15 min in a Rayonet reactor (at 31 °C) with $\lambda > 300$ nm light. A sample of the reaction mixture (5 μ L) was then immediately injected onto a Hewlett Packard HP-1 column of a GC/MS (Hewlett-Packard 5890 gas chromatograph combined with a 5970 series mass selective detector) and the relative abundance of the ion peaks at m/z = 76, 77, 78, 79, and 80 was determined by selective ion monitoring. Under these conditions all the iodobenzene was consumed.

The corrections to the apparent C_6H_6/C_6H_5D ratios (i.e., m/z 78/79 ratios) for natural abundance ${}^{13}C$ and ${}^{2}H$ and for the (M - 1)⁺ peak were determined on the same GC/MS instrument using 5 μ L aliquots of solutions of benzene (2.0 mg, 3.5 mg and 5.0 mg) in THF (1 mL). The intensities of the m/z = 77, 78, and 79 peaks were corrected for the background signal, this correction being based on a 2 min portion of the GC/MS spectrum devoid of any true signal. As a result of the three independent experiments with C_6H_6 the mean contributions to m/z = 78 and 79 are $93.55 \pm 0.06\%$ and $6.448 \pm 0.056\%$, respectively, where the errors are 2σ . For C_6H_5D the corresponding figures for m/z = 78 and 79 are $24.60 \pm 0.19\%$ and $75.40 \pm 0.19\%$, respectively.

The observed abundances of the peaks at m/z = 78 and 79 were proportioned into the contributions actually due to C_6H_6 and to C_6H_5D by solving the two following equations:

m/z (78)intensity = 93.55 (C₆H₆)_{actual} + 24.60 (C₆H₅D)_{actual}

$$m/z$$
 (79)intensity = 6.45 (C₆H₆)_{actual} + 75.40 (C₆H₅D)_{actual}

Although these two equations yield the $(C_6H_6)_{actual}/(C_6H_5D)_{actual}$ ratios there are two additional corrections which must be applied before the true rate constant ratio, $k_{\text{THF}}/k_{\text{D}}$, can be calculated. The first involves correcting the nominal quantity of n-Bu₃SnD used in each experiment for the fact that this material was only 96.0% pure. The second arises from potential sources of C_6H_6 in the C₆H₅·/*n*-Bu₃SnD reaction. There are two potential sources of C₆H₆ in this reaction: (i) a *n*-Bu₃SnH impurity, (ii) hydrogen abstraction from the butyl groups of n-Bu₃SnD by the C₆H₅. radical. With regard to (i) the claimed isotopic purity was 96.6 atom % deuterium which could imply as much as 3.4% n-Bu₃-SnH as an impurity. To check on the real relative yield of C₆H₆ in the C₆H₅·/n-Bu₃SnD reaction a solution of phenyl iodide in *n*-Bu₃SnD (ca. 1:10 mole ratio) was photolyzed (4 min, $\lambda > 300$ nm). Product analysis showed that $(C_6H_6)_{actual} = 0.028$ $[(C_6H_5D)_{actual}+(C_6H_6)_{actual}]$ which probably means that there is about 2.8% n-Bu₃SnH present in the n-Bu₃SnD (rather than 3.4%). Thus,

$$(n-Bu_3SnD)_{actual} = 0.960 \times 0.972 (n-Bu_3SnD)_{nominal}$$

= 0.933 (n-Bu_3SnD)_{nominal}

Furthermore, because 2.8% of "extra" C_6H_6 is formed in the $C_6H_5{}{}^{\prime}/n{}^{-}\text{Bu}_3\text{SnD}$ reaction, the actual yield of C_6H_6 must be corrected in order to obtain the quantity of C_6H_6 formed by phenyl radical abstraction from THF:

$$(C_6H_6)_{THF} = (C_6H_6)_{actual} - 0.028 (C_6H_5D)_{actual}$$

We have employed the above corrections to calculate the $k_{\rm THF}/$ $k_{\rm D}$ ratios given in Table 2. That is,

$$\frac{k_{\text{THF}}}{k_{\text{D}}} = \frac{(C_{6}H_{6})_{\text{actual}} - 0.028 (C_{6}H_{5}D)_{\text{actual}}}{(C_{6}H_{5}D)_{\text{actual}}} \times \frac{0.933 (n-\text{Bu}_{3}\text{SnD})_{\text{nominal}}}{[\text{THF}]}$$

Reaction of Iodobenzene with Tri-*n***-butyltin Hydride in Perdeuterotetrahydrofuran.** Experiments were conducted in an identical manner to those employed to study the *n*-Bu₃-SnD/THF competition. Since the TDF contained 99.5 + atom % D no correction was considered to be necessary for C₆H₆ formed in the C₆H₅'/nDF reaction. Furthermore, because the C₆H₆ formed in the C₆H₅'/*n*-Bu₃SnD reaction appears to come entirely from a *n*-Bu₃SnH impurity (*vide supra*) no correction would appear to be necessary for C₆H₆ formed by C₆H₅ **abstrac**tion from the butyl groups of *n*-Bu₃SnX (X = H, D, I). Thus, the only correction required is to the quantity of *n*-Bu₃SnH employed because this material was only 97% pure:

$$\frac{k_{\text{TDF}}}{k_{\text{H}}} = \frac{(C_6H_5D)_{\text{actual}}}{(C_6H_6)_{\text{actual}}} \times \frac{0.97(n\text{-Bu}_3\text{SnH})_{\text{nominal}}}{[\text{TDF}]}$$

This equation was used to derive the final column in Table 3. Reaction of *p*-Iodotoluene with Tri-*n*-butyltin Hydride (Deuteride) and Methyl Methacrylate in Cyclohexane. In a typical experiment, *n*-Bu₃SnH(D) (50 μ L, 185 μ mol) and ditert-butyl hyponitrite (0.6 mg, 4 μ mol) were added to a solution of p-iodotoluene (~40 mg, ~200 μ mol) and MMA (50 μ L, 425 μ mol) in cyclohexane (200 μ L). The mixture was then freezepump-thaw degassed and flame-sealed in vacuo in an 800 µl Carey tube. After standing for ~ 2 h at ambient temperature, the ampoule was opened and the contents were added to 400 μL of argon-purged CCl₄. The solution was warmed to 43 °C for 0.5 h and then analyzed by capillary GC (Varian 6500 instruments/25 m BP1 column) using the pure addends for reference.³⁸ The mean concentration of n-Bu₃SnH(D) (92–95%) of the initial value) was calculated from the ratio n-Bu₃Snl/n-Bu₃SnCl (GC) in the quenched mixture. The results are tabulated in Table 4.

Acknowledgment. We thank Mr. A. Wallner for assistance in conducting the experiments described in footnote 34. We also thank Professor C. von Sonntag for communicating some of his results to us prior to publication and the Association for International Cancer Research and the National Foundation for Cancer Research for partial support of this work.

Supporting Information Available: Table 5 with product data for the reaction of iodobenzene with (neat) *n*-Bu₃SnH/ (neat) *n*-Bu₃SnD mixtures (1 page). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO951245A

⁽³⁸⁾ Bordwell, F. G.; Carlson, M. W. J. Am. Chem. Soc. 1970, 92, 3370–3377.